33 research outputs found

    Low-Power Computer Vision: Improve the Efficiency of Artificial Intelligence

    Get PDF
    Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems

    Non-equilibrium growth of metal clusters on a layered material: Cu on MoS2

    Get PDF
    We use a variety of experimental techniques to characterize Cu clusters on bulk MoS2 formed via physical vapor deposition of Cu in ultrahigh vacuum, at temperatures ranging from 300 K to 900 K. We find that large facetted clusters grow at elevated temperatures, using high Cu exposures. The cluster size distribution is bimodal, and under some conditions, large clusters are surrounded by a denuded zone. We propose that defect-mediated nucleation, and coarsening during deposition, are both operative in this system. At 780 K, a surprising type of facetted cluster emerges, and at 900 K this type predominates: pyramidal clusters with a triangular base, exposing (311) planes as side facets. This is a growth shape, rather than an equilibrium shape

    Elastometric device for tunable imaging

    No full text
    An optical micro-electro-mechanical systems (MEMS) structure is provided. The structure includes an elastomer membrane, a plurality of polymer fibers attached to the elastomer membrane, an array of detectors operatively connected to the plurality of polymer fibers at a first end of the plurality of polymer fibers, and a microlens array operatively connected to the plurality of polymer fibers at a second end of the plurality of polymer fibers. A method of manufacturing an optical MEMS structure is provided. The method includes forming a hollow PDMS chamber in which PDMS fibers extend from top to bottom using a lost wax molding process.</p

    Grating-assisted glass waveguide devices and fiber -optic parametric amplifiers for optical communication systems.

    Full text link
    The theory, design, and implementation of several photonics devices for the generation, amplification, and processing of optical signals in optical communication systems are described. A cascaded fiber-optic parametric amplifier based on a quasi-phase matching technique is implemented. This cascaded implementation is the first explicit application of quasi-phase matching techniques to a fiber-optic parametric amplifier and results in a 12 dB gain enhancement using a 3-stage structure. For the generation and the wavelength-sensitive processing of optical signals, distributed Bragg reflector (DBR) waveguide devices are fabricated in un-doped and Er/Yb co-doped glass substrates using Ag+ and K+ ion-exchange, respectively. Wavelength-selective operation is realized by implementing the DBRs using a high refractive index overlay technique. This technique allows DBR fabrication on substrates with hard-to-etch surfaces and can produce very short, high efficiency reflectors by utilizing the enhanced interactions between the waveguide and the high index overlay DBR. The development of methods for overlay/waveguide design, thin-film characterization, and optimum thickness deposition are reported. Using this technique, an Er/Yb co-doped glass waveguide DBR laser with a 30 mW lasing threshold and a 8.5% slope efficiency is demonstrated. An optical add-drop multiplexer with a 24 dB transmission dip and a 0.5 nm wide 3 dB bandwidth is also designed and fabricated based on the same technique.Ph.D.OpticsPure SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/123622/2/3096126.pd

    Microscale soft robotics: motivations, progress, and outlook

    No full text
    This book presents the technological basics and applications of small-scale (mm to sub-mm in length-scales) soft robots and devices, written for researchers in both academia and industry. Author Jaeyoun Kim presents technological motivations, enabling factors, and examples in an inter-linked fashion, making it easy for readers to understand and explore how microscale soft robots are a solution to researchers in search of technological platforms for safe, human-friendly biomedical devices. A compact and timely introduction, this book summarizes not only the enabling factors for soft robots and MEMS devices, but also provides a survey of progress in the field and looks to the future in terms of the material, design, and application aspects this new technology demonstrates
    corecore